
Introduction to Octave and MATLAB for
Math, Science, and Engineering Students

MATTHEW F. CAMPBELL, PH.D., P.E.*

Sigay Kauyagan, Inc.
matthew.f.campbell@gmail.com

http://www.mcampbell.info/

December 4, 2018

Abstract

This tutorial teaches the basics of Octave software, which is an open-source computer program for performing scientific
and engineering calculations whose coding language is very similar to that of MATLAB software. Only syntax that is

compatible for both Octave and MATLAB has been included in this document, making it a good primer for both packages.
Topics discussed in this manual include the Octave Graphical User Interface (GUI), variables, arrays, matrices, plots, scripts

(including loops, logical structures, and reading/writing files), and functions.

Contents
1 Basic calculator 4

1.1 Introduction . 4
1.2 Using the workspace . 4
1.3 Variables . 4
1.4 Order of operations . 6
1.5 Built-in functions . 7
1.6 Workspace operations . 8
1.7 Example: Calculating interest . 10
1.8 Exercises . 10

2 Arrays 11
2.1 Manual entry . 11
2.2 Automatic generation . 11
2.3 Index notation . 13
2.4 Formatting and sizing . 14
2.5 Operations . 14
2.6 Searching . 15
2.7 Example: Basel problem . 16
2.8 Example: Polynomial roots . 16
2.9 Example: Student enrollment . 17
2.10 Exercises . 18

*Mindanao State University, General Santos City, South Cotabato, 9500, Philippines.

mailto:matthew.f.campbell@gmail.com
http://www.mcampbell.info/

3 Matrices 18
3.1 Manual entry . 18
3.2 Automatic generation . 19
3.3 Index notation . 20
3.4 Formatting and sizing . 21
3.5 Operations . 22
3.6 Higher dimensional spaces . 24
3.7 Example: Magic squares . 26
3.8 Example: Solving linear equations . 27
3.9 Exercises . 28

4 Plotting 28
4.1 Plotting basics . 28
4.2 Styling plots . 31
4.3 Advanced plots . 32

4.3.1 Pixel color . 32
4.3.2 Pie charts . 33
4.3.3 Bar charts . 33
4.3.4 Three-dimensional plots . 33

4.4 Exercises . 36

5 Scripts 36
5.1 Basic script . 36
5.2 Logical structures . 37

5.2.1 If trees . 37
5.2.2 Switches . 38

5.3 Loops . 39
5.3.1 For loops . 39
5.3.2 While loops . 41

5.4 Printing to the command window . 42
5.5 Writing and reading text files . 44
5.6 Example: Printing multiplication table . 45
5.7 Exercises . 45

6 Functions 46
6.1 Contents . 46
6.2 Input . 46
6.3 Output . 47
6.4 Sub-functions . 48
6.5 Example: Calculating current . 48
6.6 Exercises . 49

7 Advanced concepts 49
7.1 Scalar structures . 49
7.2 Character array manipulation . 51
7.3 Cell arrays . 52
7.4 Debugging . 53

A Bug workarounds 53

List of Figures
1 Parts of the Octave GUI window. 4
2 Figure of y = sin(x) over 0 ≤ x ≤ 2π with −1 ≤ y ≤ 1. 29
3 Graph of d = e−2t sin(10t), representing the dampening of a vibrating guitar string. 29
4 Comparison of two functions in the same graph window. 30
5 Graph with styling. 32

2

6 Pixel color graph example. 32
7 Pie chart example. 33
8 Bar chart example. 34
9 Surface plot example. 34
10 Mesh plot example . 35
11 Example three-dimensional plot. 35
12 Figure to copy for exercise. 36
13 Plot generated by a sample script. 37
14 Random walk of a variable, generated using a loop. 42
15 Figure created using structure data organization. 51

List of Tables
1 Predefined constant variables. 5
2 Order of operations. 6
3 Several built-in scientific functions. 7
4 Commands to generate arrays automatically. 12
5 Array operations. 14
6 Example of (fake) data that can be used in array format. 17
7 Commands to generate matrices automatically. 19
8 Commands to manipulate matrices. 22
9 Description of some dimensions. 24
10 Plotting options. 31
11 Relational and logical operators. 38
12 Precedence structure for relational and logical operational sequences. 38

3

1 Basic calculator

1.1 Introduction
This is document is a short introduction to Octave [1], a programming environment similar in form and function to MAT-

LAB [2, 3] and also similarly capable to Igor Pro software [4] and Wolfram Alpha [5]. Octave is free, open-source software
designed for Windows, Mac OS, and Linux, and can be obtained from https://www.gnu.org/software/Octave/.

1.2 Using the workspace
Open the Octave Graphical User Interface (GUI). Figure 1 shows a screenshot of the basic layout with the important parts

of the window labeled.
1. Command window: Used to enter commands and read computer output.
2. Editor: Used to write scripts and functions.
3. File browser: Shows files in current directory on computer.
4. Workspace: Shows active variables and matrices.

Figure 1: Parts of the Octave GUI window.

We can perform basic calculations like this. Press Enter or Return on the keyboard to run the command.

Command Window� �
>> 1+2*3
ans = 7� �

Notice that Octave assigns the output to a variable called ans.
To go back and re-run a previous command with modifications, we can use the up/down arrow keys (↑/↓) on the keyboard.

Then we can use the left/right arrow keys (←/→) to move the cursor where we want to edit.

1.3 Variables
In Octave, a variable is an object used to store a piece of data. This data is usually a number or a string of characters (often

called a character array). In the previous example, the output was assigned to the variable ans. We can also choose to assign
the output to a specific variable such as x, and then refer to that variable in calculations too. Finally, if we want to see the value
of a variable, we can type its name and press Enter or Return on the keyboard.

Command Window� �
>> x=5*6+7

4

https://www.gnu.org/software/Octave/

x = 37
>> x/35+2
ans = 3.0571
>> x
x = 37
>> ans
ans = 3.0571� �

Octave includes several predefined constant variables, as summarized in Table 1. Try using these variables in Equations 1-5.

Table 1: Predefined constant variables in Octave (adapted from Houcque [6]).
Command Name Symbol
pi Pi π
e Exponential e
i or j Imaginary number i = j =

√
−1

Inf Infinity ∞
NaN Not a Number

r = 5 (1)

A = πr2 (2)

V =
4

3
πr3 (3)

t =∞+ 10 (4)
u = (−∞) +∞ (5)

The input to Octave would look like the text below. Notice that we need to put a times (*) symbol to denote multiplication.

Command Window� �
>> r=5
r = 5
>> A=pi*r^2
A = 78.540
>> V=(4/3)*pi*r^3
V = 523.60
>> t=inf+10
t = Inf
>> u=(-inf)+inf
u = NaN� �

Variable names must start with a letter character (i.e., a through z), but they can contain numbers (0 through 9) or under-
scores (_). Variable names are case-sensitive, so A is not equivalent to a. Avoid naming variables with function names, such as
size, char, all, etc..

Command Window� �
>> m = 1
m = 1
>> n123 = 4
n123 = 4
>> n123_abc = 5
n123_abc = 5� �

We can find if a variable exists using the exist command. If the answer is 0, the variable does not exist; if the answer is
1, the variable does exist.

Command Window� �
>> x = 25
x = 25
>> exist x
ans = 1
>> exist y
ans = 0� �

5

We can list the variables in our workspace by typing who or whos.

Command Window� �
>> var1 = 56/2.6
var1 = 21.538
>> var2 = 81+3/18
var2 = 81.167
>> var3 = 91/4
var3 = 22.750
>> who
Variables in the current scope:

var1 var2 var3

>> whos
Variables in the current scope:

Attr Name Size Bytes Class
==== ==== ==== ===== =====

var1 1x1 8 double
var2 1x1 8 double
var3 1x1 8 double

Total is 3 elements using 24 bytes� �
1.4 Order of operations

Octave follows standard order-of-operations rules, according to Table 2. Try to evaluate the following expressions:

x =

(
500 +

45

72

) 2
3

(6)

y =

(
30× 5 + 100

78

)4
(34× 2− 36)

5 (7)

z =
xy

22
(8)

Command Window� �
>> x=(500+45/72)^(2/3)
x = 63.049
>> y=((30*5+100/78)^4)/((34*2-36)^5)
y = 15.610
>> z=(x*y)/22
z = 44.735� �

Table 2: Order of operations in Octave (adapted from Houcque [6]).
Precedence Operation
1 Parentheses (inside-to-outside)
2 Exponentials (left-to-right)
3 Multiplication/division (left-to-right)
4 Addition/subtraction (left-to-right)

Now use parentheses to change the order of operations:

Command Window� �
>> a=2+(3*4)
a = 14
>> b=(2+3)*4
b = 20� �

6

1.5 Built-in functions
Octave includes many built-in mathematical functions for advanced scientific computing. A list of several of these is

provided in Table 3.

Table 3: Several built-in scientific functions in Octave (adapted from Houcque [6]).
Command Name Function Note
sqrt(x) Square root

√
x

cbrt(x) Cube root 3
√
x

sin(x) Sine sin(x) x in radians
cos(x) Cosine cos(x) x in radians
tan(x) Tangent tan(x) x in radians
asin(x) Arc sine arcsin(x) Output in radians
acos(x) Arc cosine arccos(x) Output in radians
atan(x) Arc tangent arctan(x) Output in radians
sind(x) Sine sin(x) x in degrees
asind(x) Arc sine arcsin(x) Output in degrees
exp(x) Exponential ex

log(x) Natural logarithm ln(x)
log10(x) Common logarithm log10(x)
abs(x) Absolute value |x|
inv(x) Inverse 1

x
ceil(x) Round up to nearest integer
floor(x) Round down to nearest integer
round(x) Round to nearest integer
rem(x) Remainder after division

We can use these functions like this:

Command Window� �
>> sqrt(35)
ans = 5.9161
>> x = 10
x = 10
>> y = sqrt(x)
y = 3.1623
>> z = -3
z = -3
>> abs(z)
ans = 3
>> log10(x)
ans = 1� �

Try to evaluate these expressions or numerically test these equalities. The Octave code is given below for reference as well.

x = eiπ + 1 (9)
y = cos(π) + i sin(π) (10)

z = 1 +
1

4
+

1

9
+

1

16
+

1

25
+

1

36
+

1

49
+

1

64
+

1

81
+

1

100
+

1

121
+

1

144
+ . . . =

π2

6
(11)

a = 10log10(8) (12)
b = ln(e) (13)

c =
log10(π)

log10(e)
= ln(π) (14)

Command Window� �
>> x=exp(i*pi)+1
x = 0.0000e+00 + 1.2246e-16i
>> y=cos(pi)+i*sin(pi)

7

y = -1.0000e+00 + 1.2246e-16i
>> z = 1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + 1/49 + 1/64 + 1/81 + 1/100 + 1/121 + 1/144
z = 1.5650
>> pi^2/6
ans = 1.6449
>> a=10^(log10(8))
a = 8.0000
>> b=log(e)
b = 1
>> c=log10(pi)/log10(e)
c = 1.1447
>> log(pi)
ans = 1.1447� �

1.6 Workspace operations
To change the appearance of decimal numbers, use the format command. Notice that if we want to see the value of a

variable, we just need to type its name and press Enter or Return.

Command Window� �
>> format short
>> x=4536/3.2
x = 1417.5
>> format long
>> x
x = 1417.50000000000
>> format short eng
>> x
x = 1.4175e+003
>> format long eng
>> x
x = 1.41750000000000e+003
>> format short
>> x
x = 1417.5� �

The notation x = 1.4175e+003 is called scientific notation; it means that x = 1.4175× 103.
By the way, sometimes Octave gives an answer that is very very small. In that case, it may actually be equal to zero instead.

For instance, it is mathematically true that sin(π) = 0. However, Octave says that sin(π) = 1.2246 × 10−16, which is very
very small. This is due to a round-off error in the program.

Command Window� �
>> sin(pi)
ans = 1.2246e-16� �

We can change the spacing of the lines of input/output in the command window using format compact (surpresses
extra line blanks) or format loose (includes extra line breaks). Also, we can use the command more off to prevent the
buffering of text output in the command window.

We can clear your command window (delete the text in it) easily by typing clc and pressing return. It’s also possible for
us to clear variables (remove them from our workspace), either one-by-one or all-at-once.

Command Window� �
>> x = 34
x = 34
>> y = 22
y = 22
>> z = 67
z = 67
>> clear x
>> x
error: 'x' undefined near line 1 column 1
>> clear all
>> y
error: 'y' undefined near line 1 column 1
>> z
error: 'z' undefined near line 1 column 1� �

8

We can use the help command to find information about functions.

Command Window� �
>> help clc
'clc' is a built-in function from the file libinterp/corefcn/sysdep.cc

-- Built-in Function: clc ()
-- Built-in Function: home ()

Clear the terminal screen and move the cursor to the upper left
corner.

Additional help for built-in functions and operators is
available in the online version of the manual. Use the command
'doc <topic>' to search the manual index.

Help and information about \Octave is also available on the WWW
at http://www.\Octave.org and via the help@\Octave.org
mailing list.� �

It’s possible to enter multiple commands per line, using a semicolon to separate the commands. Also, we can suppress the
output of a command using a semicolon at the end of the line.

Command Window� �
>> x = 45+6/4
x = 46.500
>> x = 45+6/4; y = 22+7/3; z = 99/32;
>> x
x = 46.500
>> y
y = 24.333
>> z
z = 3.0938
>> a = x+y+z;
>> a
a = 73.927� �

If we want to continue a command on a second line (for instance, to keep our code organized), we can use three dots
(�...) like this:

Command Window� �
>> x = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + �...
10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + ...
20
x = 210� �

Sometimes it is nice to know the largest and smallest numbers that Octave can handle. To find them, use the commands
realmax and realmin.

Command Window� �
>> realmax
ans = 1.7977e+308
>> realmin
ans = 2.2251e-308� �

We might also want to know the smallest number that can be distinguished from zero (sometimes called machine precision).
To find this we can use eps.

Command Window� �
>> eps
ans = 2.2204e-16� �

9

1.7 Example: Calculating interest
Octave can be used to calculate interest. We will look at simple and compound interest here. Simple interest just accrues

upon the principal amount P , whereas compound generates interest upon the accrued interest. The equation to find the total
accrued amount (principal plus interest) A using simple interest is

A = P (1 + rt) (15)

where r is the rate of interest per year and t is the time in years. What if we wanted to find the principal we would need to
invest in order to have A = 1000 dollars in t = 5 years at r = 0.01 (1% interest). Solving Equation 15 for P gives

P =
A

1 + rt
(16)

Entering the above in Octave gives the result of P = 952.38 dollars.

Command Window� �
>> A=1000
A = 1000
>> t=5
t = 5
>> r=0.01
r = 0.010000
>> P=A/(1+r*t)
P = 952.38� �

What if the interest was compounded? The equation to calculate the accrued amount A under compound interest would be

A = P (1 + r)
t (17)

When the interest is compounded, the accrued interest can in turn generate more interest; this means that a lower principal
amount P is required to generate the same accrued amount A in the same time t with the same interest rate r. Solving
Equation 17 for P gives

P =
A

(1 + r)
t (18)

Entering this into Octave gives the new result of P = 951.47 dollars, which indeed is slightly less than the result under simple
interest.

Command Window� �
>> P=A/((1+r)^t)
P = 951.47� �

1.8 Exercises
Try the following problems (Equations 19-26) in Octave and record the input/output. Just for fun, try them on paper, too!

s =
45.34

8 + 2× 50
(19)

t =
104 − 18

100 + 22
(20)

u = 121− 15× 20 +

(
22− 11× 30

450− 81

)1.45

(21)

v = 50(30 + 40(100 + 23(40− 11))) (22)

10

w = 6÷ 2(1 + 2) (23)

x = 9− 3÷ 1

3
+ 1 (24)

y = 10× 4− 2×
(
42 ÷ 4

)
÷ 2÷ 1

2
+ 9 (25)

z = −10÷
(
20÷ 22 × 5÷ 5

)
× 8− 2 (26)

2 Arrays

2.1 Manual entry
An array (sometimes called a vector) is a list of numbers (sometimes called values). Arrays make it easy to do mathematical

operations on large quantities of data. The naming conventions of arrays are the same as those of variables (see Section 1.3).
We can create an array in several ways. Manual entry looks like this:

Command Window� �
>> format compact
>> xVec1 = [1 3 5 7 9]
xVec1 =

1 3 5 7 9
>> xVec2 = [1, 2, 3, 4, 5]
xVec2 =

1 2 3 4 5
>> xVec3 = [2; 4; 6; 8; 10; 12]
xVec3 =

2
4
6
8
10
12� �

As we can see, to separate numbers and create a row array, we should use spaces or commas (,). To separate numbers and
make a column array, we should use semicolons (;).

2.2 Automatic generation
What if we wanted to have Octave generate arrays for us automatically? There are several ways, but we will just look at

two for now. They are the colon operator (:) and a command called linspace. Let’s try asking Octave to count by 2’s from
1 until 9.

Command Window� �
>> a = 1:2:9
a =

1 3 5 7 9� �
How about something harder, like counting by intervals of 5.6 from 3.4 until 20.2?

Command Window� �
>> b = 3.4:5.6:20.2
b =

3.4000 9.0000 14.6000 20.2000� �
What if this time we wanted to have 13 evenly-spaced points between 3 and 15?

11

Command Window� �
>> c = linspace(3,15,13)
c =

3 4 5 6 7 8 9 10 11 12 13 14 15� �
Now let’s ask Octave to find 7 evenly-spaced points between 46.3 and 50.5.

Command Window� �
>> d = linspace(46.3,50.5,7)
d =

46.300 47.000 47.700 48.400 49.100 49.800 50.500� �
So, the colon operator vectorName=a:d:b tells Octave to create an array starting at a and spacing numbers by steps of
delta d until the last number reaches (but does not pass) b (this notation can be shortened to vectorName=a:b if the spacing
delta is equal to one). The notation vectorName=linspace(a,b,c) tells Octave to create an array starting on a and
ending exactly on b that has c number of evenly-spaced points. Note that if we want to have a precise step (delta) value, we
need to use the colon operator, but if we want to end on an exact number, we need to use the linspace command. Here are
some generic examples. See also Table 4 for a summary of these commands.

Command Window� �
>> startVal = 1
startVal = 1
>> endVal = 13
endVal = 13
>> delta = 3
delta = 3
>> numPoints = 5
numPoints = 5
>> xVec4 = startVal:delta:endVal
xVec4 =

1 4 7 10 13
>> xVec5 = linspace(startVal,endVal,numPoints)
xVec5 =

1 4 7 10 13� �
Table 4: Commands to generate arrays automatically in Octave.

Command Description
a:d:b Creates an array starting at a and spacing numbers in steps of d until reaching (but not passing) b
linspace(a,b,c) Creates an array starting at a and ending on b that has c number of evenly-spaced points
logspace(a,b,c) Creates an array starting at 10a and ending on 10b that has c number of logarithmically-spaced points

Try to generate the following arrays automatically. The Octave code is given below for reference as well.

q = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] (27)
r = [3, 6, 9, 12] (28)
s = [1.5, 3.0, 4.5, 6.0] (29)
t = [10, 9, 8, 7, 6, 5] (30)
u = [−10,−9,−8,−7,−6,−5] (31)
v = [−1.5− 1.0,−0.5, 0.0, 0.5, 1.0, 1.5] (32)
w = [4, 1, 0, 1, 4] (33)

Command Window� �
>> q = 1:1:10
q =

1 2 3 4 5 6 7 8 9 10
>> r = 3:3:12
r =

3 6 9 12
>> s = linspace(1.5,6,4)

12

s =
1.5000 3.0000 4.5000 6.0000

>> t = 10:-1:5
t =

10 9 8 7 6 5
>> u = linspace(-10,-5,6)
u =

-10 -9 -8 -7 -6 -5
>> v = -1.5:0.5:1.5
v =

-1.5000 -1.0000 -0.5000 0.0000 0.5000 1.0000 1.5000
>> w = [-2:1:2].^2
w =

4 1 0 1 4� �
2.3 Index notation

We can refer to numbers in an array using index numbers inside parentheses. The first number in the array has index 1, and
the last number in the array can be referred to as end.

Command Window� �
>> yVec = 1:2:15
yVec =

1 3 5 7 9 11 13 15
>> yVec(1)
ans = 1
>> yVec(3)
ans = 5
>> yVec(4)
ans = 7
>> yVec(end)
ans = 15
>> yVec(end-1)
ans = 13� �

We can also grab several numbers at once (called a block) using colon notation (:).

Command Window� �
>> zVec = 1:3:15
zVec =

1 4 7 10 13
>> zVec(1:3)
ans =

1 4 7
>> zVec(2:4)
ans =

4 7 10� �
Lastly, we can delete values from arrays or insert values like this:

Command Window� �
>> x=1:10
x =

1 2 3 4 5 6 7 8 9 10
>> x(1:3)=[]
x =

4 5 6 7 8 9 10
>> y=11:20
y =

11 12 13 14 15 16 17 18 19 20
>> y = [y(1:5), 1, 2, 3, y(6:10)]
y =

11 12 13 14 15 1 2 3 16 17 18 19 20� �

13

2.4 Formatting and sizing
Arrays can be in row form or column form. To change an array into column form, use the prime symbol ('). This is called

transposing the array.

Command Window� �
>> testVec = linspace(3,20,5)
testVec =

3.0000 7.2500 11.5000 15.7500 20.0000
>> testVec2 = testVec'
testVec2 =

3.0000
7.2500
11.5000
15.7500
20.0000� �

It can be useful to find the dimensions of an array. This can be done using the length and size commands. The size
command is better-suited for matrices, which we will cover later. Its output consists of two numbers; the first is the number of
rows and the second is the number of columns.

Command Window� �
x =

1 2 3 4 5 6 7 8 9 10 11 12 13
>> length(x)
ans = 13
>> size(x)
ans =

1 13
>> y = [1:5]'
y =

1
2
3
4
5

>> length(y)
ans = 5
>> size(y)
ans =

5 1� �
2.5 Operations

We can perform operations on each entry of an array using operators such as +, -, ./, .*, and .^ (see Table 5). Notice
that, when performing operations involving two vectors, the multiplication (.*), division (./), and exponentiation symbols
(.^) have periods or dots (.) in front of them. This tells Octave to apply the operations on each element of the arrays (this
is called elementwise notation). Note that operations involving two arrays require that the arrays have the same number of
elements (i.e., the same size or length).

Table 5: Array operations in Octave (adapted from Houcque [6]).
Operation Command
Addition +
Subtraction -
Multiplication .*
Division ./
Exponentiation .^

Command Window� �
>> uVals = 30:-4:15
uVals =

14

30 26 22 18
>> vVals = 2:3:11
vVals =

2 5 8 11
>> uVals+10
ans =

40 36 32 28
>> uVals-2
ans =

28 24 20 16
>> uVals*5
ans =

150 130 110 90
>> uVals/3
ans =

10.0000 8.6667 7.3333 6.0000
>> uVals+vVals
ans =

32 31 30 29
>> uVals-vVals
ans =

28 21 14 7
>> uVals.*vVals
ans =

60 130 176 198
>> uVals./vVals
ans =

15.0000 5.2000 2.7500 1.6364
>> uVals.^2
ans =

900 676 484 324� �
Most built-in functions work on an entry-by-entry (sometimes said element-by-element) basis. This means that the function

is applied to every value in the array. A simple example is the sin() function.

Command Window� �
>> xVec = linspace(0,2*pi,7)
xVec =

0.00000 1.04720 2.09440 3.14159 4.18879 5.23599 6.28319
>> yVec = sin(xVec)
yVec =

0.00000 0.86603 0.86603 0.00000 -0.86603 -0.86603 -0.00000� �
However, some functions work on the array as a whole. Here are some examples:

Command Window� �
xVec =

1 2 3 4 5 6 7 8 9 10
>> xAverage = mean(xVec)
xAverage = 5.5000
>> xMedian = median(xVec)
xMedian = 5.5000
>> xTotal = sum(xVec)
xTotal = 55
>> xMaximum = max(xVec)
xMaximum = 10
>> xMinimum = min(xVec)
xMinimum = 1� �

2.6 Searching
We can select elements in an array based on their value. The resulting array shows a 1 where the condition is true, and 0

where the condition is false.

Command Window� �
>> xVec=1:1:10
xVec =

15

1 2 3 4 5 6 7 8 9 10
>> yVec=10:-1:1
yVec =

10 9 8 7 6 5 4 3 2 1
>> compareVec = [xVec>yVec]
compareVec =

0 0 0 0 0 1 1 1 1 1
>> yVec<8
ans =

0 0 0 1 1 1 1 1 1 1
>> xVec<8
ans =

1 1 1 1 1 1 1 0 0 0� �
Lastly, we can ask Octave to look in an array to return the indices of certain elements using the find command.

Command Window� �
>> xVec=11:20
xVec =

11 12 13 14 15 16 17 18 19 20
>> largeValueIndices=find(xVec>17)
largeValueIndices =

8 9 10
>> smallValueIndices=find(xVec<14)
smallValueIndices =

1 2 3
>> largeValues=xVec(find(xVec>17))
largeValues =

18 19 20
>> smallValues=xVec(find(xVec<14))
smallValues =

11 12 13
>> indexOf15=find(xVec==15)
indexOf15 = 5� �

2.7 Example: Basel problem
Remember Equation 11 above, where we added a bunch of fractions together? It’s called the Basel Problem, and the actual

equation with all the terms is

∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+ . . . =

π2

6
(34)

Previously we attempted this by just adding a bunch of fractions together. With our knowledge of arrays, though, we can now
add a lot more terms together much more quickly (see below). Notice the use of the semicolon (;) to suppress output, as well
as the element-by-element operators (./ and .^).

Command Window� �
>> xArray = 1:1000000;
>> xArrayMod = 1./(xArray.^2);
>> xArrayModTotal = sum(xArrayMod)
xArrayModTotal = 1.64493306684877
>> actualSum = (pi^2)/6
actualSum = 1.64493406684823� �

2.8 Example: Polynomial roots
Octave can be used to find the roots of polynomial expressions. Let’s say we want to find the roots of this expression:

0 = 2x4 − 50x3 + 40x2 + 3x− 3 (35)

We can make an array c to represent the coefficients of the polynomial in Equation 35, and then use the roots(c) command
to find the roots of this polynomial.

16

Command Window� �
>> c = [2 -50 40 3 -3]
c =

2 -50 40 3 -3
>> rootVals = roots(c)
rootVals =

24.17007
0.80859
-0.26657
0.28792� �

Therefore, we can say that x = 24.17007, x = 0.80859, x = −0.26657, and x = 0.28792 are all solutions to this polynomial.
We can check this using the polyval(c,a) command, which evaluates a polynomial with coefficients in array c at the points
in array a. The results are effectively equal to zero (i.e., very small), indicating that Octave correctly identified the roots of
Equation 35.

Command Window� �
>> polyval(c,rootVals)
ans =

1.5790e-10
-1.4655e-14
1.1102e-14
0.0000e+00� �

2.9 Example: Student enrollment
Here’s another example of how we can use arrays in Octave. We might know the total number of students enrolled in a

certain course each year for ten years (see for example Table 6). One array, titled year, would have a list of years, and a second
array, titled enrollment, would have a list of enrollment numbers in those years. We might want to find the total number
of students served in those ten years, the year with the most students and the number of students in that year, or the average
number of students. Also, assuming each student is required to pay dues to the department each year, and that the amount of
required dues per student changes year-to-year and is recorded in a vector titled duesPerStudent, we might want to know
the amount of money collected each year.

Table 6: Example of (fake) data that can be used in array format.
year enrollment duesPerStudent

[students] [dollars per student]
1995 245 45
1996 230 45
1997 304 50
1998 286 50
1999 256 65
2000 291 60
2001 310 60
2002 283 70
2003 315 70
2004 270 75

Command Window� �
>> year = [1995:1:2004]
year =

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
>> enrollment = [245 230 304 286 256 291 310 283 315 270]
enrollment =

245 230 304 286 256 291 310 283 315 270
>> duesPerStudent = [45 45 50 50 65 60 60 70 70 75]
duesPerStudent =

45 45 50 50 65 60 60 70 70 75
>> totalNumberOfStudents = sum(enrollment)

17

totalNumberOfStudents = 2790
>> [maxEnrollment,yearIndex] = max(enrollment)
maxEnrollment = 315
yearIndex = 9
>> yearWithMaximumStudents = year(yearIndex)
yearWithMaximumStudents = 2003
>> averageEnrollment = mean(enrollment)
averageEnrollment = 279
>> collectionEachYear = enrollment.*duesPerStudent
collectionEachYear =

11025 10350 15200 14300 16640 17460 18600 19810 22050 20250� �
2.10 Exercises

Try to create the following vectors (Equations 36-43) automatically through either colon notation (:), linspace, or
logspace (not using manual entry). To learn about the latter command, try help logspace. You may also have to do
operations on the entire vector, such as squaring it (^2) or making it an exponent (exp).

aV ec = [1, 3, 5, 7, 9] (36)

bV ec = [0.1, 1, 10, 100] (37)

cV ec = [2.0, 2.4, 2.8, 3.2, 3.6, 4.0] (38)

dV ec = [1, 4, 9, 16, 25, 36] (39)

eV ec = [1.0000, 2.7183, 7.3891] (40)

fV ec = [10, 8, 6, 4, 2, 0] (41)

gV ec = [−3,−2,−1, 0, 1, 2, 3] (42)

hV ec = [9, 4, 1, 0, 1, 4, 9] (43)

3 Matrices

3.1 Manual entry
A matrix is a rectangular array of numbers that is arranged in rows and columns. In Octave, matrices can be created

similarly to arrays. Note that to continue a line without finishing a command we need to use three dots (�...). Here are
some examples of manual creation:

Command Window� �
>> format compact
>> x=[1 2 3; �...
4 5 6; ...
7 8 9]
x =

18

1 2 3
4 5 6
7 8 9

>> y = [11 12 13; 14 15 16; 17 18 19]
y =

11 12 13
14 15 16
17 18 19

>> z = [10 20 30 40; 50 60 70 80; 90 100 110 120]
z =

10 20 30 40
50 60 70 80
90 100 110 120� �

3.2 Automatic generation
Octave can generate matrices automatically, too. The zeros(a,b), ones(a,b), and rand(a,b) commands create

matrices filled with 0, 1, and random numbers between 0 and 1, respectively, that have a number of rows and b number of
columns. The reshape(c,a,b) command changes the elements of array c and places them columnwise in a matrix with
a rows and b columns. The diag(d) command extracts the diagonal of matrix d. Lastly, the eye(a) command creates an
a×a matrix with ones on its diagonal and zeros elsewhere; it is called the identity matrix. These commands are summarized in
Table 7.

Table 7: Commands to generate matrices automatically in Octave (adapted from Houcque [6]).
Command Description
zeros(a,b) Creates a×b (row-by-column) matrix filled with 0’s
ones(a,b) Creates a×b matrix filled with 1’s
rand(a,b) Creates a×b matrix filled with random numbers between 0 and 1
eye(a) Creates a×a matrix of zeros except with 1 on the diagonal
magic(a) Creates a×a magic square matrix
reshape(c,a,b) Places elements of array c into a×b matrix

Command Window� �
>> xMat = zeros(3,5)
xMat =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

>> yMat = ones(2,4)
yMat =

1 1 1 1
1 1 1 1

>> rMat = rand(2,5)
rMat =

0.88394 0.23837 0.90222 0.19985 0.61667
0.67699 0.11758 0.29462 0.99987 0.27641

>> zVec = [1:1:12]
zVec =

1 2 3 4 5 6 7 8 9 10 11 12
>> zMat = reshape([1:1:12],3,4)
zMat =

1 4 7 10
2 5 8 11
3 6 9 12

>> mMat = rand(3,3)
mMat =

0.416344 0.712268 0.126029
0.570250 0.849405 0.161314
0.097609 0.629807 0.297589

>> mDiagonal = diag(mMat)
mDiagonal =

0.41634
0.84940

19

0.29759
>> nMat = eye(5)
nMat =
Diagonal Matrix

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1� �

Try to create the following matrices automatically. The Octave code is given below for reference.

q =

1 4
2 5
3 6

 (44)

r =

[
3 3 3
3 3 3

]
(45)

s =


0 0 0
0 0 0
0 0 0
0 0 0

 (46)

t =

[
10 6 2
8 4 0

]
(47)

Command Window� �
>> q = reshape([1:1:6],3,2)
q =

1 4
2 5
3 6

>> r = ones(2,3)*3
r =

3 3 3
3 3 3

>> s = zeros(4,3)
s =

0 0 0
0 0 0
0 0 0
0 0 0

>> t = reshape([10:-2:0],2,3)
t =

10 6 2
8 4 0� �

3.3 Index notation
Just like with arrays, indices can be used to refer to elements in a matrix. We can grab individual elements or grab chunks

using colon notation.

Command Window� �
>> a = reshape([1:1:20],5,4)
a =

1 6 11 16
2 7 12 17
3 8 13 18
4 9 14 19
5 10 15 20

>> a(1,1)
ans = 1
>> a(2,3)
ans = 12
>> a(4,4)

20

ans = 19
>> a(5,4)
ans = 20
>> b=a(2:5,3:4)
b =

12 17
13 18
14 19
15 20� �

We can delete or insert values as follows.

Command Window� �
>> x = reshape([1:1:16],4,4)
x =

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

>> x(2,3) = 0
x =

1 5 9 13
2 6 0 14
3 7 11 15
4 8 12 16

>> x(2,:) = []
x =

1 5 9 13
3 7 11 15
4 8 12 16

>> x(:,4) = []
x =

1 5 9
3 7 11
4 8 12

>> x = [x(1,:);[0:-1:-2];x(2:3,:)]
x =

1 5 9
0 -1 -2
3 7 11
4 8 12� �

3.4 Formatting and sizing
The transpose operator (prime symbol (')) works with matrices, too. In this example, the matrix x is transposed to make a

new matrix xTrans where the first row becomes the first column, and the second row becomes the second column.

Command Window� �
>> x=reshape(1:1:8,2,4)
x =

1 3 5 7
2 4 6 8

>> xTrans=x'
xTrans =

1 2
3 4
5 6
7 8� �

Similarly, the size operator reveals the number of rows and columns that a matrix has.

Command Window� �
>> x=ones(3,6)
x =

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

21

>> size(x)
ans =

3 6� �
If we want to rotate a matrix 90 degrees counter-clockwise, we can use the rot90 command. This command can be used

several times to achieve more rotations.

Command Window� �
>> x=reshape(1:1:16,4,4)
x =

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

>> rotatedX = rot90(x)
rotatedX =

13 14 15 16
9 10 11 12
5 6 7 8
1 2 3 4

>> rotatedX = rot90(rot90(x))
rotatedX =

16 12 8 4
15 11 7 3
14 10 6 2
13 9 5 1� �

Moreover, we can flip a matrix vertically using flipud or horizontally using fliplr.

Command Window� �
>> x=reshape(1:1:16,4,4)
x =

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

>> xFlipVert = flipud(x)
xFlipVert =

4 8 12 16
3 7 11 15
2 6 10 14
1 5 9 13

>> xFlipHoriz = fliplr(x)
xFlipHoriz =

13 9 5 1
14 10 6 2
15 11 7 3
16 12 8 4� �

The above commands are summarized in Table 8.

Table 8: Commands to manipulate matrices in Octave.
Command Description
' Transposes a matrix
rot90 Rotates a matrix 90 degrees counter-clockwise
flipud Flips a matrix vertically
fliplr Flips a matrix horizontally

3.5 Operations
We can also perform mathematical operations on all of the elements in a matrix using the same operators that worked for

arrays (see Section 2.5). These include +, -, ./, .*, and .^. Keep in mind the period/dot (.) for elementwise operating, and
also that matrices need to have the same size (number of rows and columns) to be added, multiplied, etc..

22

Command Window� �
>> x=reshape(1:1:15,3,5)
x =

1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

>> y = reshape(16:1:30,3,5)
y =

16 19 22 25 28
17 20 23 26 29
18 21 24 27 30

>> x+y
ans =

17 23 29 35 41
19 25 31 37 43
21 27 33 39 45

>> x-y
ans =

-15 -15 -15 -15 -15
-15 -15 -15 -15 -15
-15 -15 -15 -15 -15

>> x.*y
ans =

16 76 154 250 364
34 100 184 286 406
54 126 216 324 450

>> x.^y
ans =

1.0000e+00 2.7488e+11 3.9098e+18 1.0000e+25 1.5503e+31
1.3107e+05 9.5367e+13 5.9030e+20 1.1918e+27 1.7287e+33
3.8742e+08 2.1937e+16 7.9766e+22 1.3737e+29 1.9175e+35� �

Most functions work as expected on matrices (i.e., the same as they would on arrays). Others, however, must be given a
dimension over which to operate. For instance, the mean(a,b) command finds the average value of the columns (b=1) or
rows (b=2) of matrix a. This is because in Octave dimension 1 represents columns and dimension 2 represents rows. Don’t be
confused though; in the notation for automatic matrix creation, the number of rows is entered before the number of columns!
We’ll talk about dimensions more in Section 3.6.

Command Window� �
>> x=reshape(1:1:20,4,5)-10
x =

-9 -5 -1 3 7
-8 -4 0 4 8
-7 -3 1 5 9
-6 -2 2 6 10

>> columnAverages = mean(x,1)
columnAverages =

-7.50000 -3.50000 0.50000 4.50000 8.50000
>> rowAverages = mean(x,2)
rowAverages =

-1
0
1
2

>> overallAverage = mean(mean(x))
overallAverage = 0.50000� �

Conditional operations work on matrices just like they do on arrays.

Command Window� �
>> x=reshape(-5:1:6,4,3)
x =

-5 -1 3
-4 0 4
-3 1 5
-2 2 6

>> y=zeros(4,3)
y =

0 0 0

23

0 0 0
0 0 0
0 0 0

>> compareMat = [x>=y]
compareMat =

0 0 1
0 1 1
0 1 1
0 1 1

>> a = rand(3,4)-0.5
a =

-0.3887107 0.0714875 0.0048608 0.0619341
-0.2742741 -0.3612460 0.4924967 -0.1843705
0.0561357 -0.4229745 0.4680113 0.2996979

>> b = zeros(3,4)
b =

0 0 0 0
0 0 0 0
0 0 0 0

>> c = [a>b]
c =

0 1 1 1
0 0 1 0
1 0 1 1� �

3.6 Higher dimensional spaces
What if we had several matrices that were stacked on top of each other? This is where dimensions become really useful.

Several important dimensions are summarized in Table 9.

Table 9: Description of some dimensions in Octave.
Dimension Representation Analogy
1 Array Line
2 Matrix Plane
3 Stack of matrices X-Y -Z space
4 Several stacks of matrices Space-time

We can, for instance, make a stack of matrices by giving Octave a third input, or argument, in any of the matrix-creation
commands. In this example, we made a stack of four matrices that each have two rows and three columns.

Command Window� �
>> x = ones(2,3,4)
x =
ans(:,:,1) =

1 1 1
1 1 1

ans(:,:,2) =
1 1 1
1 1 1

ans(:,:,3) =
1 1 1
1 1 1

ans(:,:,4) =
1 1 1
1 1 1� �

Here is an example with several stacks of matrices; it creates two stacks of matrices, each of which contains three matrices
that each have five rows and four columns.

Command Window� �
>> y = zeros(5,4,3,2)
y =
ans(:,:,1,1) =

0 0 0 0

24

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ans(:,:,2,1) =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ans(:,:,3,1) =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ans(:,:,1,2) =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ans(:,:,2,2) =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ans(:,:,3,2) =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0� �

We can find the dimensions of an array or matrix using the ndims command. It may be confusing that Octave says the
number of dimensions of a single number or of an array is two rather than zero or one. This is because Octave actually regards
a single number as a one-row-by-one-column matrix, and it sees an array as a one-row (or one-column) matrix.

Command Window� �
>> x=1
x = 1
>> ndims(x)
ans = 2
>> xVec = ones(1,5)
xVec =

1 1 1 1 1
>> ndims(xVec)
ans = 2
>> xMat = ones(3,5)
xMat =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

>> ndims(xMat)
ans = 2
>> x3dMat = ones(3,5,2)
x3dMat =
ans(:,:,1) =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

ans(:,:,2) =
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

>> ndims(x3dMat)
ans = 3
>> x4dMat = ones(3,5,2,3)
x4dMat =
ans(:,:,1,1) =

25

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

ans(:,:,2,1) =
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

ans(:,:,1,2) =
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

ans(:,:,2,2) =
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

ans(:,:,1,3) =
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

ans(:,:,2,3) =
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

>> ndims(x4dMat)
ans = 4� �

3.7 Example: Magic squares
Magic squares are matrices whose rows, columns, and diagonals all add up to the same value. Octave can automatically

generate magic squares with size length a using the magic(a) command.

Command Window� �
>> x = magic(4)
x =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

>> columnSum = sum(x,1)
columnSum =

34 34 34 34
>> rowSum = sum(x,2)
rowSum =

34
34
34
34

>> sum(diag(x))
ans = 34
>> sum(diag(rot90(x)))
ans = 34� �

We can have Octave randomly remove some of the values from the magic square to create a puzzle.

Command Window� �
>> y = magic(5)
y =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

>> z = round(rand(5))
z =

1 0 0 0 0
1 1 0 0 1
1 0 1 0 0
1 1 1 1 1

26

0 1 1 0 1
>> q = y.*z
q =

17 0 0 0 0
23 5 0 0 16
4 0 13 0 0
10 12 19 21 3
0 18 25 0 9� �

3.8 Example: Solving linear equations
Octave makes it easy to solve a system of linear equations using matrices. Let’s say we wanted to solve these equations to

find the values of x, y, z, m, and n.

4 = 1x+ 3y + 45z + 6m+ 3n (48)
9 = 3x+ 48y + 69z + 4m+ 0n (49)

−44 = 3x− 5y + 13z − 19m+ 10n (50)
23 = 34x− 8y + 8z + 0m+ 0n (51)
7 = 1x+ 0y + 0z + 3m+ 345n (52)

It turns out that these equations can be written in matrix/vector notation with matrix A and column vectors b and v as
follows.

A =


1 3 45 6 3
3 48 69 4 0
3 −5 13 −19 10
34 −8 8 0 0
1 0 0 3 345

 (53)

b =


4
9
−44
23
7

 (54)

v =


x
y
z
m
n

 (55)

b = A× v (56)

In Octave we can create a matrix A that contains the right hand side of these equations, and a column array b that contains
the left hand side. Then, using something called the backslash operator (\) we can solve for the column array v that contains
x, y, z, m, and n from top-to-bottom. This is equivalent to stating v = A−1 × b.

Command Window� �
>> A = [1 3 45 6 3; �...
3 48 69 4 0; ...
3 -5 13 -19 10; ...
34 -8 8 0 0; ...
1 0 0 3 345]
A =

1 3 45 6 3
3 48 69 4 0
3 -5 13 -19 10
34 -8 8 0 0
1 0 0 3 345

>> b = [4; 9; -44; 23; 7]
b =

4
9

27

-44
23
7

>> v = A\b
v =

0.8044698
0.3019979
-0.2419990
2.1971556
-0.0011476

>> v = inv(A)*b
v =

0.8044698
0.3019979
-0.2419990
2.1971556
-0.0011476� �

Thus, we obtain the solution:

x = 0.8044698 (57)
y = 0.3019979 (58)

z = −0.2419990 (59)
m = 2.1971556 (60)
n = −0.0011476 (61)

3.9 Exercises
Try to create the following matrices (Equations 62-64) automatically.

aMat =

[
2 6 10 14
4 8 12 16

]
(62)

bMat =


16 12 8 4
15 11 7 3
14 10 6 2
13 9 4 1

 (63)

cMat =


7 0 0 0 7
0 7 0 7 0
0 0 14 0 0
0 7 0 7 0
7 0 0 0 7

 (64)

4 Plotting

4.1 Plotting basics
Plotting is important in computer programming because our minds process data visually. It can help us find problems in our

code or to see new solutions if we plot the data before, during, and after our calculations. The basic command to create a plot
in Octave is plot(x,y), where x and y are two arrays of numbers that have the same length. Here is an example.

Command Window� �
>> x=linspace(0,2*pi,100);
>> y=sin(x);
>> plot(x,y)� �

The above code creates an array called x that consists of 100 evenly-spaced numbers starting on 0 and ending on 2π (note
that the semicolon (;) surppresses the output), calculates the sine of those points and assigns them to array y, and finally plots
x vs. y with x on the horizontal axis and y on the vertical axis. The plot is shown in Figure 2.

28

Figure 2: Figure of y = sin(x) over 0 ≤ x ≤ 2π with −1 ≤ y ≤ 1.

Here is another example. What if we were given the function d = e−2t sin(10t) where d is displacement and t is time and
we were asked to postulate what might have generated this response. We can plot the function like this, generating the graph in
Figure 3.

Command Window� �
>> close all
>> t=linspace(0,5,200);
>> d=exp(-2*t).*sin(10*t);
>> plot(t,d)� �

Figure 3: Graph of d = e−2t sin(10t), representing the dampening of a vibrating guitar string.

Notice that the displacement decreases over time. Perhaps this represents someone putting their finger on a vibrating guitar
string to dampen out the vibrations. Note that the command close all removes all previously open figures, such as that
created in the y = sin(x) example above.

Let’s now try to find out what happens when we change the 2 parameter inside the exponential term, for example by making
it equal to 4. We can do this easily by plotting the old function and the new function in the same window. First, we make a
new window using the figure command, and then use hold on before plotting and hold off after plotting to send all

29

plots to the current graph window. The results are shown in Figure 4. It looks like this parameter controls the amplitude of the
oscillations. Also, counterintuitively, the amplitude decreases as this number increases.

Command Window� �
>> close all
>> t=linspace(0,5,200);
>> dA=exp(-2*t).*sin(10*t);
>> dB=exp(-4*t).*sin(10*t);
>> figure(1)
>> hold on
>> plot(t,dA)
>> plot(t,dB)
>> hold off� �

Figure 4: Comparison of two functions in the same graph window.

Try making plots of the following functions. As in the previous example, use the figure(n) command (where n is 1, 2,
3, etc.) to create a new window and avoid overwriting the previous plot. Be careful to choose an appropriate spacing and range
of the horizontal axis points so that the curves are smooth and complete. The Octave code is given below for reference.

y = x3 − x2 + x (65)

b = −ea cos(a2) (66)

d =
1

c
(67)

v = ln (u sin (u)) (68)

Command Window� �
>> close all
>> figure(1)
>> x=linspace(-5,5,1000);
>> y=x.^3 - x.^2 + x;
>> plot(x,y)
>>
>> figure(2)
>> a=linspace(0,10,1000);
>> b=-exp(a).*cos(a.^2);
>> plot(a,b)
>>
>> figure(3)
>> c = linspace(-1,1,1000);
>> d = 1./c;
>> plot(c,d)

30

>>
>> figure(4)
>> u=logspace(-5,1,10000);
>> v=log(u.*sin(u));
>> plot(u,v)� �

4.2 Styling plots
It’s possible to change the way that plots look in order to make them more clear or to emphasize certain features. We’ll

style one plot here to demonstrate some of the options. First, close any open figures, generate the arrays x and y to plot, create
a new graph window.

Command Window� �
>> close all
>> x=0:1:10;
>> y=[1 3 5 15 18 15 16 24 28 26 32];
>> figure(1)� �

Then, plot y vs. x with stars (*) using a red (r) line (-) to connect the dots. These point/line style options go in single
quotation marks ('') and are called additional arguments (also called inputs or options) to the plot command. More plotting
options are summarized in Table 10.

Command Window� �
>> plot(x,y,'*r-')� �

Table 10: Plotting options in Octave (adapted from Houcque [6]).
Marker Color Line style

Code Description Code Description Code Description
+ Crosshair k Black - Solid
o Circle r Red -- Dashed
* Star g Green : Dotted
. Point b Blue -. Dashed-dotted
x Cross m Magenta
s Square c Cyan
d Diamond w White
^ Triangle (up)
v Triangle (down)
> Triangle (right)
< Triangle (left)
p Pentagram
h Hexagram

Next, add x and y axis labels (using xlabel and ylabel), a title (using title), and a legend (using legend). Note that
if we have multiple lines on our graph, we can label each one by putting comma-separated entries into the legend command.
We also might want to show the grid lines for the plot in order to make it easier to read; this is done using the grid on
command. Lastly, we can change the axis limits of the plot, too, using the axis([xMin xMax yMin yMax]) command.
Here, the numbers xMin, xMax, yMin, and yMax are the minimum and maximum values on the horizontal and vertical axes.
This produces the graph shown in Figure 5.

Command Window� �
>> xlabel('X Values')
>> ylabel('Y Values')
>> title('Fun Data')
>> legend('Our Data')
>> grid on
>> axis([0 10 0 40])� �

31

Figure 5: Graph with styling.

4.3 Advanced plots
We can make advanced plots too. Try these examples to see what the plots look like.

4.3.1 Pixel color

Use the pcolor(x) command to create a pixel color map using the values of two-dimensional (2D) matrix x (see Fig-
ure 6).

Command Window� �
>> close all
>> x=rand(10,10);
>> figure(1);
>> pcolor(x);� �

Figure 6: Pixel color graph example.

32

4.3.2 Pie charts

Use the pie(x) command to create a pie chart of the values of array x. The function normalizes the contents of x before
plotting so that each slice of the pie chart is a percentage of the sum of the values of x (see Figure 7).

Command Window� �
>> close all;
>> x=rand(1,7)
x =

0.698722 0.764991 0.834177 0.198607 0.619721 0.660698 0.039598
>> xNorm=x/sum(x)
xNorm =

0.183079 0.200442 0.218570 0.052039 0.162379 0.173115 0.010376
>> figure(1);
>> pie(xNorm);� �

Figure 7: Pie chart example.

4.3.3 Bar charts

Similar to the pie(x) command, the bar(x) command constructs a bar chart using the elements of x (see Figure 8).

Command Window� �
>> close all
>> x=[10, 15, 30, 20, 25, 40, 50];
>> figure(1);
>> bar(x);� �

4.3.4 Three-dimensional plots

Use the surf(x,y,z) and mesh(x,y,z) commands to produce three-dimensional (3D) plots in which 2D matrix z is
a function of 2D matrices x and y (see Figures 9 and 10). The meshgrid(a,b) command repeats arrays a and b to create
two 2D matrices that repeat the contents of a and b over rows and columns, respectively. Once a plot window is open, we can
click on the tools shown to rotate or translate the graph.

Command Window� �
>> close all
>> x=-10:0.5:10;
>> y=x;
>> [x2D,y2D]=meshgrid(x,y);
>> z2D=sqrt(x2D.^2+y2D.^2)+1;

33

Figure 8: Bar chart example.

>> figure(1);
>> surf(x2D,y2D,z2D);
>> figure(2);
>> mesh(x2D,y2D,z2D);� �

Figure 9: Surface plot example.

In the surf(x,y,z) and mesh(x,y,z) commands, z was a function of x and y. In other words, z was a dependent
variable and x and y were independent variables. We can also create a plot where two coordinates are a function of just one
using the plot3(m,n,t) command (see Figure 11). Here, t is an independent variable and m and n are dependent variables.

Command Window� �
>> close all;
>> t=linspace(0,10*pi,1000);
>> m=sin(t);
>> n=cos(log(t));
>> figure(1);
>> plot3(m,n,t);� �

34

Figure 10: Mesh plot example

Figure 11: Example three-dimensional plot.

35

4.4 Exercises
Try to duplicate Figure 12. The functions in the figure are y1 = cos(x2) and y2 = ln(x).

Figure 12: Figure to copy for exercise.

5 Scripts

5.1 Basic script
A script is a set of instructions that Octave runs sequentially. Scripts save time compared to entering commands into

the command window because they allow multiple commands to be edited and re-run many times. Instead of entering each
command to Octave individually in the command window, the commands are listed in the editor window in a saved file that
itself is run by Octave as an entire unit. Each script is given a unique name with extension .m, such as filename.m.

Here is a simple script that plots two variants of the sin function. Open the editor window in Octave (either using the file
menu or by typing edit in the command window) and type/copy in this code (if copying the code, you may need to re-type
the single quotation marks (') due to a copy-paste error). Then save the script with file name plotSinScript.m, and run
the script by typing plotSinScript in the command window. The graph that this script produces is shown in Figure 13,
and prints one line of output to the command window.

Editor� �
% plotSinScript.m
% Basic Script Example
% clear workspace
clear all
close all
format short
format compact
more off
clc
% print to command window
disp('Hello World!')
% generate arrays
x=linspace(0,2*pi,1000);
y1=30*sin(x);
y2=exp(x).*sin(x);
% graph the arrays
figure(1)
hold on
plot(x,y1,'c-')
plot(x,y2,'g-')
hold off
xlabel('X Values')

36

ylabel('Y Values')
legend('Function 1','Function 2')
axis([0 2*pi -180 35])
title('Variations of the Sine Function')� �

Command Window� �
Hello World!� �

Figure 13: Plot generated by a sample script.

The first part of this script clears the workspace (command window and current variables). The next line prints Hello
World! to the command window. Finally, the last section creates the arrays to be graphed, plots them, and styles the plot.
Notice the text after the percent signs (%). These are called comments and their purpose is to place helpful information or
reminders in the code.

5.2 Logical structures
5.2.1 If trees

Sometimes we need to tell Octave to choose between two alternatives or more as to what to do next in a program, depending
on a set of conditions that we decide upon. This can be accomplished using logical structures. The primary type of logical
structure is called an if tree. An example script involving an if tree is shown below, along with some sample output. Create
a new script in the editor window, type/copy this text into it, and save it as ifTreeExample.m.

Editor� �
% ifTreeExample.m
% If Tree Example
% clear workspace
clear all
close all
format short
format compact
more off
clc
% multiply two random integers between 0 and 10
m=round(rand(1)*10)
n=round(rand(1)*10)
x=m*n
% decide what to do depending on the number
if(x<50)

disp('x is closer to 0')
elseif(x>50)

disp('x is closer to 100')

37

else
disp('x is in the middle')

end� �
Command Window� �

m = 3
n = 1
x = 3
x is closer to 0� �

Here, the lines starting with if, elseif, and else are called conditional statements, the line end tells Octave that the
if tree is complete, and the indented lines of code are the instructions. The indentation is done to organize the list and set
apart its contents. The less than (<) and greater than (>) symbols are called relational operators; they ask Octave to compare
two numbers. Two relational operators can be used in one conditional statement using the and (&), or (|), and not (~)
commands, which are called logical operators. For instance, if((x<y)&(a>b)) checks first if x<y and then checks if a>b.
Also helpful are the short-circuit operators && and ||, which only evaluate the second statement if the first statement is true
(&&) or false (||). For example, if((x<y)&&(a>b)) checks first if x<y but only checks a>b if x<y. Several relational
and logical operators are listed in Table 11.

Table 11: Relational and logical operators in Octave (adapted from Houcque [6]).
Operator Description
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
== Equal to
~= Not equal to
& And
| Or
~ Not
&& Short-circuit and
|| Short-circuit or

Just like the order of operations discussed in Section 1.4 (see also Table 2), relational and logical operational sequences also
have a precedence structure. This structure is detailed in Table 12.

Table 12: Precedence structure for relational and logical operational sequences in Octave (adapted from Houcque [6]). The
unary plus/minus operators are used for defining positive and negative numbers. The colon applies if/when performing logic
with arrays.

Precedence Operation
1 Parentheses (inside-to-outside)
2 Transpose ('), exponential (^)
3 Unary plus/minus (+/-) and logical negation (~)
4 Multiplication (*) and right/left division (//\)
5 Addition/subtraction (+/-)
6 Colon (:)
7 Relational operators (</<=/>/>=/==/~=; see Table 11)
8 And (&)
9 Or (|)

5.2.2 Switches

In situations where we have many alternatives from which Octave should chose, a switch statement can run more quickly
and be understood by other computer programmers more readily. The following syntax compares one randomly-generated
integer value to several other specific values. One sample result is given.

38

Editor� �
% switchExample.m
% Switch Example
% clear workspace
clear all
close all
format short
format compact
more off
clc
% pick a number and compare
x=round(10*rand(1))
switch x

case 0
disp('x=0')

case 5
disp('x=5')

case 10
disp('x=10')

otherwise
disp('Not 0, 5, or 10')

end� �
Command Window� �

x = 7
Not 0, 5, or 10� �

It is also possible to determine if a value falls into one of several ranges, as shown below.

Editor� �
% switchExampleRange.m
% Switch Example for Ranges
% clear workspace
clear all
close all
format short
format compact
more off
clc
% pick a number and compare
x=round(10*rand(1))
switch logical(true)

case x<=1
disp('x<=1')

case x<=3
disp('1<x<=3')

case x<=7
disp('3<x<=7')

otherwise
disp('7<x<=10')

end� �
Command Window� �

x = 0
x<=1� �

5.3 Loops
5.3.1 For loops

In some programs we need to do the same or a similar operation several times. For instance, we might need to ask Octave
to multiply some numbers and store them in a new array. One way to do this is by using a loop. In particular, if the number of
repetitions is known in advance, a for loop (sometimes called for. . .end syntax) can be used. Here is a simple script that
multiplies the numbers in two arrays. Save it as forLoopExample.m then run it.

39

Editor� �
% forLoopExample.m
% For-Loop Example
% clear workspace
clear all
close all
format short
format compact
more off
clc
% create arrays
m=1:5;
n=linspace(100,-100,5);
m
n
% multiply arrays
for(k=1:length(m));

outVecA(k)=m(k)*n(k);
outVecB(k)=m(k).^3;
outVecC(k)=n(k)/10;

end
% show output
outVecA
outVecB
outVecC� �

Command Window� �
m =

1 2 3 4 5
n =

100 50 0 -50 -100
outVecA =

100 100 0 -200 -500
outVecB =

1 8 27 64 125
outVecC =

10 5 0 -5 -10� �
The loop code is contained between the for and end commands. To begin, the line for(k=1:length(m)) tells Octave

to run the loop one time for each element in array m, and moreover to pick a new value of k (k=1, 2, 3, . . .) each iteration of
the loop. The next three lines perform mathematical operations involving arrays m and n and then assign the results to the kth

element of arrays outVecA, outVecB, and outVecC. Finally, the line end tells Octave where the loop code is completed.
It’s also possible to have two loops with one inside of the other; these are called nested loops. Here is an example that

creates a matrix.

Editor� �
% doubleForLoopEx.m
% Double For-Loop Example
% clear workspace
clear all
close all
format short
format compact
more off
clc
% create arrays
x=(1:5).^2
y=linspace(1,10,10)
% generate matrix to fill
A=zeros(length(x),length(y))
% iterate over values of x and y to fill matrix A
for(m=1:length(x))

for(n=1:length(y))
A(m,n)=x(m)*y(n);

end
end
% print matrix
A� �

40

Command Window� �
x =

1 4 9 16 25
y =

1 2 3 4 5 6 7 8 9 10
A =

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

A =
1 2 3 4 5 6 7 8 9 10
4 8 12 16 20 24 28 32 36 40
9 18 27 36 45 54 63 72 81 90
16 32 48 64 80 96 112 128 144 160
25 50 75 100 125 150 175 200 225 250� �

In the example, the matrix A is created one element at a time by individually multiplying the values of x and y. The line
for(m=1:length(x)) starts the outer loop over the values of x, and the line for(n=1:length(y)) starts the inner
loop over the values of y.

Lastly, there are times when we may want to exit one cycle of a loop before it finishes or exit the loop altogether before all
cycles have completed. These options are both possible using the continue (proceed immediately to the next loop cycle) and
break (jump out of the loop and forgo all remaining cycles) commands.

5.3.2 While loops

In other programs, we need to do the same operation until a certain condition is met. One example is a random walk; we can
tell Octave to randomly increment or decrement a variable until it “walks” out of a certain bounds. This can be accomplished
using a while loop, which tells Octave to continue repeating a set of instructions until some end conditions are reached.

Editor� �
% whileLoopExample.m
% While Loop Example
% clear workspace
clear all
close all
format short
format compact
more off
clc
% set initial parameters
x=3;
k=1;
time(1)=0;
position(1)=x;
% walk x back and forth
while((x>=0)&&(x<=6)&&(k<100))

x=x+(round(2*rand(1))-1);
k=k+1;
time(k)=k-1;
position(k)=x;

end
% plot the progress
figure(1)
plot(time,position,'ks:')
xlabel('Time')
ylabel('X Position')
title('Random Walk from While Loop')
axis([0 time(end) -1 7])
% output results
time(end)
position(end)� �

Command Window� �
ans = 27
ans = 7� �

41

This function generates a plot like that shown in Figure 14. A random number (-1, 0, or +1) is added to variable x as long
as x ≥ 0, x ≤ 6, or the maximum permittable number of iterations is not reached (i.e., k < 100).

Figure 14: Random walk of a variable, generated using a loop.

5.4 Printing to the command window
It can be useful to print the output of a script to the command window. The most basic way to accomplish this is to type

the name of the variable on a line and omit the semicolon (;) at the end. Another way is to use the disp command, which
can either show the value of a variable (disp(x)) or a series of characters (disp('some text')). By the way, a series of
characters is referred to as a character array or a string; character arrays can be stored in variables and printed as output, too.
Lastly, a more advanced method is to use fprintf, which offers great control over the formatting and appearance of output.
Try the example script below to test these methods.

Editor� �
% printingComWinEx.m
% Printing to the Command Window Example
% clear workspace
clear all
close all
format short
format compact
more off
clc
% create variables
x=pi;
y=e;
c=299792458; %m/s
% create strings
s1='Hello World!';
s2='Octave is ';
s3='awesome!';
% output without semicolon
x
y
% output using disp
disp('The value of Pi is')
disp(x)
disp(s1)
% output using fprintf
fprintf('The value of Pi is %8.6f\r\n',x)
fprintf('The value of e is %8.6f\r\n',y)
fprintf('Floating-point notation: pi=%7.2f and e=%7.2f\r\n',x,y)
fprintf('Scientific notation: %10.4e and e=%10.4e\r\n',x,y)

42

fprintf('The speed of light is %10.8e m/s\r\n',c)
fprintf('%10s%8s\r\n',s2,s3)� �

Command Window� �
x = 3.1416
y = 2.7183
The value of Pi is
3.1416
Hello World!
The value of Pi is 3.141593
The value of e is 2.718282
Floating-point notation: pi= 3.14 and e= 2.72
Scientific notation: 3.1416e+00 and e=2.7183e+00
The speed of light is 2.99792458e+08 m/s
Octave is awesome!� �

Notice the syntax of the fprintf command. The first argument is a character array (notice the quotation marks, '') that
specifies the formatting of the output, and the latter arguments are the numbers to be printed to the command window. Within
the %8.6f character array in the first case, the 8 tells Octave to reserve 8 character spaces for a number, the 6 instructs Octave
to print the number with 6 decimal places, and the f specifies that the output is a floating-point field. In later instructions, the
e denotes scientific notation, and the s denotes character array output. Finally, the \r\n is an instruction to add a new-line
character, meaning the next output statement will be printed to a new line in the command window.

We can combine fprintf statements within a for loop to print tables. The next script is an example; for each value in
the x array it prints one row of the output table, consisting of the values in arrays x, y1, y2, and y3.

Editor� �
% printTableToComWinEx.m
% Printing Table to the Command Window
% clear workspace
clear all
close all
format short
format compact
more off
clc
% create arrays
x=linspace(0,1,10);
y1=x.^2;
y2=x.^3;
y3=x.^4;
% print header row
fprintf(' x x^2 x^3 x^4\r\n')
% loop to print data rows
for(k=1:length(x))

fprintf('%5.3f %5.3f %5.3f %5.3f\r\n',x(k),y1(k),y2(k),y3(k))
end� �

Command Window� �
x x^2 x^3 x^4

0.000 0.000 0.000 0.000
0.111 0.012 0.001 0.000
0.222 0.049 0.011 0.002
0.333 0.111 0.037 0.012
0.444 0.198 0.088 0.039
0.556 0.309 0.171 0.095
0.667 0.444 0.296 0.198
0.778 0.605 0.471 0.366
0.889 0.790 0.702 0.624
1.000 1.000 1.000 1.000� �

5.5 Writing and reading text files
Another important capability of Octave is that of reading and writing text files consisting of tabular data. There are many

advanced functions in Octave that can accomplish these tasks, but we will focus only on some of the basics here. Just like

43

writing tables to the command window, fprintf can be used inside a for loop to write text to a file. The following script
writes data to a text file called outputFile.csv using this approach.

Editor� �
% printTableToFileEx.m
% Writing Table to a File
% clear workspace
clear all
close all
format short
format compact
more off
clc
% create arrays
x=1:1:10;
y1=x.^(1/2);
y2=x.^(1/3);
y3=x.^(1/4);
% open file
fileNameOut = 'outputFile.csv';
fid = fopen(fileNameOut,'w');
% print header row
fprintf(fid,'x,x^(1/2),x^(1/3),x^(1/4)\r\n')
% loop to print data rows
for(k=1:length(x))

fprintf(fid,'%5.3f,%5.3f,%5.3f,%5.3f\r\n',x(k),y1(k),y2(k),y3(k))
end
% close file
fclose(fid);� �

File� �
x,x^(1/2),x^(1/3),x^(1/4)
1.000,1.000,1.000,1.000
2.000,1.414,1.260,1.189
3.000,1.732,1.442,1.316
4.000,2.000,1.587,1.414
5.000,2.236,1.710,1.495
6.000,2.449,1.817,1.565
7.000,2.646,1.913,1.627
8.000,2.828,2.000,1.682
9.000,3.000,2.080,1.732
10.000,3.162,2.154,1.778� �

Notice that the file name extension is *.csv, which stands for comma-separated values; this is the reason that the entries
are all separated by commas (,). The fopen command opens the file and assigns it an identifier (fid). This identifier is used
as an argument in the fprintf commands to tell Octave which file receives the output text. Also, the 'w' argument gives
Octave permission to write to the file. Lastly, the fclose statement closes the file.

We can then re-read this text file easily using csvread. This command generates a matrix consisting of the numbers in
the text file. The arguments 1,0 tell Octave to skip the first row of the file but to not skip any columns.

Editor� �
% readTableFromFileEx.m
% Read Table from a File
% clear workspace
clear all
close all
format short
format compact
more off
clc
% specify file name
fileNameIn = 'outputFile.csv';
% read file to create matrix
A = csvread(fileNameIn,1,0)� �

Command Window� �
44

A =
1.0000 1.0000 1.0000 1.0000
2.0000 1.4140 1.2600 1.1890
3.0000 1.7320 1.4420 1.3160
4.0000 2.0000 1.5870 1.4140
5.0000 2.2360 1.7100 1.4950
6.0000 2.4490 1.8170 1.5650
7.0000 2.6460 1.9130 1.6270
8.0000 2.8280 2.0000 1.6820
9.0000 3.0000 2.0800 1.7320
10.0000 3.1620 2.1540 1.7780� �

5.6 Example: Printing multiplication table
By way of example, let’s talk through the process we would go through to print out a multiplication table that goes up to

10× 10 = 100. We could do it in one line using the vectorization capabilities of Octave, but for practice we’ll use a for loop
and fprintf instead (the one-line version is table=[meshgrid(1:10)].*[meshgrid(1:10)]'). A matrix (i.e., a
multiplication table) generally requires a nested for loop, where the outer loop is usually used for the rows and the inner loop
is normally for the columns. Also, we will need to print to the screen line-by-line, meaning we will have to have each row’s
values ready before issuing the print command. Here is what it could look like.

Editor� �
% makeMultTable.m
% Make Multiplication Table
% clear workspace
clear all
close all
format short
format compact
more off
clc
% loop over rows and columns
printArray = zeros(1,10);
for m=1:10;

for n=1:10;
printArray(n)=m*n;

end
fprintf('%4.0f%4.0f%4.0f%4.0f%4.0f%4.0f%4.0f%4.0f%4.0f%4.0f\r\n',printArray)

end� �
Command Window� �

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100� �

In the above code, the fprintf command uses a shortcut in which the entire row vector is specified rather than each
element being passed individually.

5.7 Exercises
Write scripts to accomplish the following tasks:

1. Plot five sin wave functions yn = sin (mx) in the range 0 ≤ x ≤ 2π together on the same graph using random
multipliers m spaced uniformly in the range 0 < m < 10.

2. Print a 10-by-10 matrix of random numbers to a file named randomNumbers.csv.
3. List the first 100 prime numbers (using the isprime command).

45

6 Functions

6.1 Contents
A function is a piece of code that performs a task and/or returns a set of results, often based on a set of inputs provided by

the user. At a basic level, the primary difference between scripts and functions in Octave is that functions can have input/output
parameters, whereas scripts operate based on their pre-coded initial conditions and variables. Another important difference is
that functions operate within their own work space, whereas scripts share the same work space as the command window; this
means functions do not need to have commands like clear all at the top to remove all current variables, and also multiple
functions can operate simultaneously while having variables with identical names but different values.

The general pattern for the contents of a function is shown below. Type/copy this text into the editor window and save it as
myFunction.m.

Editor� �
function myOutput = myFunction(myInput)
% Return 1+myInput
myOutput = myInput + 1;
end� �

This simple function just adds 1 to whatever number was passed to it. The first line begins with the word function, which
tells Octave that this is a function and not a script. The first line also shows that myOuput is the variable that the function
will return, that the name of the function is myFunction (the function must also be saved with file name myFunction.m),
and that the input to the function will be called myInput. The next line is a one-line description that is shown if you type
help myFunction in the command window. The third line, and all subsequent lines until the end command, perform
desired operations. Finally, the end statement closes the function. When the input to the function is 1, the output is 2:

Command Window� �
>> myFunction(1)
ans = 2� �

6.2 Input
There are several ways to provide input to a function. The most basic way is in the function’s first line, as shown in the

previous example. It is possible to have multiple input arguments as well, as in the following example.

Editor� �
function myOutput = multipleInputFunc(myInputA, myInputB, myInputC)
% Return myInputA+myInputB+myInputC
myOutput = myInputA + myInputB + myInputC;
end� �

This function produces the following output when the inputs are 1, 2, and 3.

Command Window� �
>> multipleInputFunc(1,2,3)
ans = 6� �

Some functions don’t require any inputs at all, such as this one, which returns an integer ranging from 0 to 10.

Editor� �
function outVar = randTen
% Return random integer ranging from 0 to 10
outVar = round(10*rand(1));
end� �

Command Window� �
>> randTen
ans = 3� �

A function can also prompt the user for input information using the input command. This function converts kilometers to
miles.

46

Editor� �
function mi = convertKmToMi
% Convert kilometers to miles
km = input('Enter number of kilometers: ');
mi = km*0.621371;
end� �

Command Window� �
>> convertKmToMi()
Enter number of kilometers: 42.2
ans = 26.222� �

6.3 Output
As in the case of inputs, functions can also output information in several ways. The examples above have already demon-

strated the case of a single output variable (the output to the command window was assigned to the default ans). Functions can
also produce no output variables but instead perform operations in the background, print output to a text file, or show output on
the screen.

Editor� �
function printCircle(x)
% Print a circle pattern with integer x
x = abs(round(x));
while(x>=10);x=x-1;end;
fprintf('\r\n')
fprintf('%4.0f%1.0f%1.0f%1.0f%1.0f\r\n',x,x,x,x,x)
fprintf('%3.0f%6.0f\r\n',x,x)
fprintf('%2.0f%8.0f\r\n',x,x)
fprintf('%2.0f%8.0f\r\n',x,x)
fprintf('%3.0f%6.0f\r\n',x,x)
fprintf('%4.0f%1.0f%1.0f%1.0f%1.0f\r\n',x,x,x,x,x)
fprintf('\r\n')
end� �

Command Window� �
>> printCircle(7)

77777
7 7
7 7
7 7
7 7
77777� �

This function gives more than one output variable.

Editor� �
function [c, a] = getCircleInfo(d)
% Return the circumference 'c' and area 'a' of a circle with diameter 'd'
c=pi*d;
a=pi*(d/2).^2;
end� �

Command Window� �
>> [circ, area] = getCircleInfo(10)
circ = 31.416
area = 78.540� �

Finally, functions can also receive and return arrays or matrices. For example, using the previous function getCircleInfo
, we can pass an array of diameters and receive back two arrays of corresponding circumference and area values.

47

Command Window� �
>> diameterValues = 1:5
diameterValues =

1 2 3 4 5
>> [circValues, areaValues] = getCircleInfo(diameterValues)
circValues =

3.1416 6.2832 9.4248 12.5664 15.7080
areaValues =

0.78540 3.14159 7.06858 12.56637 19.63495� �
6.4 Sub-functions

One technique for keeping functions organized is to include smaller units of code, called sub-functions, within the larger
structure. Here is a function that includes two sub-functions. It computes the square of an input value using addition, multipli-
cation, and exponentiation.

Editor� �
function [ya, ym, ye] = testExp(x)

% Demonstrate squaring by addition, multiplication, and exponentiation
ya = expByAdd(x);
ym = expByMult(x);
ye = x^2;
% subfunction for addition
function ya = expByAdd(x)

ya = 0;
for k=1:x

ya = ya + x;
end

end
% subfunction for multiplication
function ym = expByMult(x)

ym = x*x;
end

end� �
Command Window� �

>> [a, b, c] = testExp(7)
a = 49
b = 49
c = 49� �

Lastly, it can be helpful to use the return command in order to exit a function or sub-function before it is completed. For
instance, if a function consists of many lines of code but in some special cases can be solved immediately upon executing the
function, it may be useful to assign the output for these cases and then call the return option.

6.5 Example: Calculating current
Let’s try writing a function that can compute the current (I , amperes [A]) required by an electronic device, given its power

(P , watts [W]) and voltage (V , volts [V]). The equation relating these is

I =
P

V
(69)

Our function must therefore obtain P and V from the user and return I . Here is one possible version.

Editor� �
function I = getIfromPV(P,V)
% Return I given P and V
I = P/V;
end� �

So, if we had a P = 1000 W device operating at V = 240 V, we could find its current consumption to be I ≈ 4.17 A.

48

Command Window� �
>> I = getIfromPV(1000,240)
I = 4.1667� �

6.6 Exercises
Implement the following functions:

1. TF=convertCtoF(TC): Converts Celsius temperature TC to Fahrenheit temperature TF according to TF = 9
5TC+32.

2. tSeconds=convertDayToSeconds(tDay): Converts time in days tday to time in seconds tsecond according to
tsecond = 86400tday .

3. [perimeter,diagonal,area]=getSquareInfo(sideLength): Determines the perimeterP , diagonal length
D, and area A of a square given its side length L, according to P = 4L, D =

√
2L, and A = L2.

7 Advanced concepts

7.1 Scalar structures
Sometimes a large program has sets of similar variables that apply to different problem states. For instance, a program

that controls the air conditioning for a building with three rooms A, B, and C might have a temperature T , a pressure P , and
a relative humidity ω for each room. Together, this would create 3 × 3 = 9 variables (e.g., TA, TB , TC , PA, . . . , ωB , and
ωC). This can become rather cumbersome quite quickly (imagine a building with 100 rooms, each with 30 thermodynamic
variables to control!). Instead of creating all of these variables, we can use data types called scalar structures to organize the
information. Scalar structures group related data together in containers called fields. Fields can be assigned to scalar structures
using dot syntax (i.e., A.T=25) or the command A=struct('T',25). These fields can be numerical variables, character
arrays, numerical arrays, or other information.

Editor� �
% scalarStructureEx.m
% Scalar Structure Example
% clear workspace
clear all
close all
format short
format compact
more off
clc
% create structures
A.T = 25; % C
A.P = 101325; % Pa
A.omega = 50; % percent
B.T = A.T;
B.P = A.P;
B.omega = 40;
C.T = 30;
C.P = 101402;
C.omega = 70;
% list states
A
B
C� �

Command Window� �
A =

scalar structure containing the fields:
T = 25
P = 101325
omega = 50

B =
scalar structure containing the fields:

T = 25
P = 101325
omega = 40

49

C =
scalar structure containing the fields:

T = 30
P = 101402
omega = 70� �

The above example used only the numeric data type in the fields. We can also combine data types, as in the following
plotting example (see Figure 15)

Editor� �
% scalarStructurePlottingEx.m
% Scalar Structure Example: Plotting
% clear workspace
clear all
close all
format short
format compact
more off
clc
% Create data
xVals=linspace(0,2*pi,50);
yVals=sin(xVals);
formatString='r-o';
titleString='Sine Wave';
xLabelString='X Values';
yLabelString='Y Values';
domainRange=[0 2*pi -1 1];
% create structure
data = struct('x',xVals, 'y',yVals, �...
'format',formatString, 'title',titleString, ...
'xLabel',xLabelString, 'yLabel',yLabelString, ...
'dr',domainRange)
% plot the data
figure(1)
plot(data.x,data.y,data.format)
xlabel(data.xLabel)
ylabel(data.yLabel)
title(data.title)
axis(data.dr)� �

Command Window� �
data =

scalar structure containing the fields:
x =
Columns 1 through 7:

0.00000 0.12823 0.25646 0.38468 0.51291 0.64114 0.76937
Columns 8 through 14:

0.89760 1.02583 1.15405 1.28228 1.41051 1.53874 1.66697
Columns 15 through 21:

1.79520 1.92342 2.05165 2.17988 2.30811 2.43634 2.56457
Columns 22 through 28:

2.69279 2.82102 2.94925 3.07748 3.20571 3.33394 3.46216
Columns 29 through 35:

3.59039 3.71862 3.84685 3.97508 4.10330 4.23153 4.35976
Columns 36 through 42:

4.48799 4.61622 4.74445 4.87267 5.00090 5.12913 5.25736
Columns 43 through 49:

5.38559 5.51382 5.64204 5.77027 5.89850 6.02673 6.15496
Column 50:

6.28319
y =
Columns 1 through 7:

0.00000 0.12788 0.25365 0.37527 0.49072 0.59811 0.69568
Columns 8 through 14:

0.78183 0.85514 0.91441 0.95867 0.98718 0.99949 0.99538
Columns 15 through 21:

0.97493 0.93847 0.88660 0.82017 0.74028 0.64823 0.54553
Columns 22 through 28:

0.43388 0.31511 0.19116 0.06407 -0.06407 -0.19116 -0.31511

50

Columns 29 through 35:
-0.43388 -0.54553 -0.64823 -0.74028 -0.82017 -0.88660 -0.93847
Columns 36 through 42:
-0.97493 -0.99538 -0.99949 -0.98718 -0.95867 -0.91441 -0.85514
Columns 43 through 49:
-0.78183 -0.69568 -0.59811 -0.49072 -0.37527 -0.25365 -0.12788
Column 50:
-0.00000

format = r-o
title = Sine Wave
xLabel = X Values
yLabel = Y Values
dr =

0.00000 6.28319 -1.00000 1.00000� �

Figure 15: Figure created using structure data organization.

7.2 Character array manipulation
Octave can accomplish very complicated tasks on character arrays (sometimes called strings). This section will introduce

a few of these capabilities; more information can be found using the help feature or the online documentation. As shown
previously, a character array can be created using single quotation marks, as in a='char array'. Two character arrays can
be combined using brackets [], and a character array can be split using parenthesis ().

Command Window� �
>> a = 'this is a character array'
a = this is a character array
>> b=' also known as a string'
b = also known as a string
>> c = [a b]
c = this is a character array also known as a string
>> d = c(11:19)
d = character� �

Searching within character arrays is possible using strfind. This arguments to this command are first the character array
to be searched and second the character array to be found within the first character array; the function returns the index of the
first character of the found string, or, if multiple instances are found, it returns a numerical array with these indices.

Command Window� �
>> x = 'ok lets go'
x = ok lets go
>> y = strfind(x,'go')
y = 9

51

>> z = strfind(x,'not')
z = [](0x0)
>> m = strfind(x,'o')
m =

1 10� �
Strings can be converted to numbers and numbers to strings using the str2num and num2str commands, respectively.

Command Window� �
>> marathonDistance = str2num('26.2')
marathonDistance = 26.200
>> marathonDistanceChar = num2str(26.2)
marathonDistanceChar = 26.2� �

7.3 Cell arrays
Recall the scalar structures introduced above, which were able to contain different data types using fields. While scalar

structures are very useful, they are in a sense limited because they cannot be indexed; in other words, the fields cannot be
referred to by an array-like index (e.g., k=1, 2, 3, . . .). Cell arrays address this problem in that their containers, called cells,
can not only contain any data type but also can be indexed. One cell array may contain, for instance, a character array, a vector,
an integer, and a boolean (true/false) value. Cell arrays are created using curly brackets {}, and their contents can be accessed
using index notation. In turn, contents of the cell contents (i.e., values stored within a numeric array within a cell array) can be
accessed using a combination of curly brackets {} and parenthesis ().

Command Window� �
>> x={'character array',[1 3 5 7],24,true}
x =
{

[1,1] = character array
[1,2] =

1 3 5 7
[1,3] = 24
[1,4] = 1

}
>> x{1}
ans = character array
>> x{2}(2)
ans = 3
>> x{2}(4)
ans = 7� �

One particularly useful feature of cell arrays is their ability to function as arrays of character arrays, or effectively as string
arrays.

Command Window� �
>> y={'this','is','a','cell','array','containing','strings'}
y =
{

[1,1] = this
[1,2] = is
[1,3] = a
[1,4] = cell
[1,5] = array
[1,6] = containing
[1,7] = strings

}� �
7.4 Debugging

Problems with a piece of code can be discouraging and time-consuming. Fortunately, there are several best practices for
debugging code systematically and efficiently.

The most important tool in debugging code is the comment. If a script or function does not run, begin by commenting out
large sections of code until at least some of the code (even the first few lines) run smoothly. A single line can be commented

52

(using %) or a block of text can also be commented (using %{ and }%). Once a minimal amount of code works, uncomment
lines or segments of code and run the script/function until the erroneous lines have been identified (i.e., the bug resurfaces).
Comments are also useful for leaving notes in your program to yourself or others about how certain lines work. If a section is
particularly complicated, it helps to have a guide as to how to understand it.

Another important debugging technique is outputting data (variables, arrays, text, etc..) to the command window or plotting
it in a figure window. Seeing actual values produced by the code is much more useful than guessing at what a section of
code might be doing. Moreover, a graphical representation of data can allow the mind to quickly pinpoint pattern breaks or
irregularities caused by code glitches. Values can be printed or plotted easily by modifying the code (e.g., by deleting a trailing
semicolon (;) so output to the command window is not suppressed) or by using the keyboard command. The keyboard
command can be inserted on a blank line in a script or function; it causes Octave to pause and gives control of the cursor to the
command window such that variables or other data in the *.m file can be examined.

Lastly, once bugs have been identified, it can be useful to use the find/replace features of the editor window to ensure that
all instances of the problem have been corrected. Along the same lines, prior to making any large change to a piece of code
(fixing a bug or implementing a new feature), it is wise to save a separate copy of the program. This way, if the change fails or
produces a bug, it can be readily undone.

A Bug workarounds
This appendix lists some known bugs for Octave and their workarounds.

1. Command window cannot scroll up. If this happens, make a fake dialogue box using the code msgbox(''); "ms-
gbox(”);"and you will be able to scroll until you click the OK button in the window. See more information here:
https://savannah.gnu.org/bugs/?52496

References
[1] John W. Eaton, David Bateman, Søren Hauberg, and Rik Wehbring. GNU Octave version 4.0.0 manual: A high-level

interactive language for numerical computations. 2015. http://www.gnu.org/software/octave/doc/interpreter.

[2] MathWorks. MATLAB. The MathWorks, Inc., 3 Apple Hill Drive Natick, MA 01760-2098, R2011a edition, 2011.
https://www.mathworks.com/products/matlab.html.

[3] Wikibooks. MATLAB programming - Wikibooks, the free textbook project, 2018.

[4] WaveMetrics, Inc. Igor Pro Version 6.34A. Technical report, WaveMetrics, Inc., Lake Oswego, OR, USA, 2015.
https://www.igorpro.net/.

[5] Wolfram Alpha LLC. Wolfram Alpha Computational Knowledge Engine, 2018. https://www.wolframalpha.com/.

[6] David Houcque. Introduction to MATLAB for Engineering Students. Northwestern University, 1.2 edition, 2005.
https://www.mccormick.northwestern.edu/documents/students/undergraduate/introduction-to-matlab.pdf.

53

https://savannah.gnu.org/bugs/?52496

	Basic calculator
	Introduction
	Using the workspace
	Variables
	Order of operations
	Built-in functions
	Workspace operations
	Example: Calculating interest
	Exercises

	Arrays
	Manual entry
	Automatic generation
	Index notation
	Formatting and sizing
	Operations
	Searching
	Example: Basel problem
	Example: Polynomial roots
	Example: Student enrollment
	Exercises

	Matrices
	Manual entry
	Automatic generation
	Index notation
	Formatting and sizing
	Operations
	Higher dimensional spaces
	Example: Magic squares
	Example: Solving linear equations
	Exercises

	Plotting
	Plotting basics
	Styling plots
	Advanced plots
	Pixel color
	Pie charts
	Bar charts
	Three-dimensional plots

	Exercises

	Scripts
	Basic script
	Logical structures
	If trees
	Switches

	Loops
	For loops
	While loops

	Printing to the command window
	Writing and reading text files
	Example: Printing multiplication table
	Exercises

	Functions
	Contents
	Input
	Output
	Sub-functions
	Example: Calculating current
	Exercises

	Advanced concepts
	Scalar structures
	Character array manipulation
	Cell arrays
	Debugging

	Bug workarounds

